
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

UV-free Texturing using Sparse Voxel DAGs

D. Dolonius1 , E. Sintorn1 and U. Assarsson1

1Chalmers University of Technology, Sweden

(a) (b) (c)

Figure 1: For full HD and compressed textures, a) THEGREATDRAWINGROOM uses one quad-linear-filtered texture lookup in voxel space
(the analogy to standard trilinear mipmap filtering of 2D textures) per pixel at 5 ms per frame; b) SKYHOUSE uses multisampling of one
baked irradiance texture at 2 ms; and c) FLIGHTHELMET uses three quad-linear-filtered textures for albedo, normal, occlusion, roughness,
and metallic at 5 ms in total. No uv mapping required.

Abstract
An application may have to load an unknown 3D model and, for enhanced realistic rendering, precompute values over the
surface domain, such as light maps, ambient occlusion, or other global-illumination parameters. High-quality uv-unwrapping
has several problems, such as seams, distortions, and wasted texture space. Additionally, procedurally generated scene content,
perhaps on the fly, can make manual uv unwrapping impossible. Even when artist manipulation is feasible, good uv layouts can
require expertise and be highly labor intensive.
This paper investigates how to use Sparse Voxel DAGs (or DAGs for short) as one alternative to avoid uv mapping. The result
is an algorithm enabling high compression ratios of both voxel structure and colors, which can be important for a baked scene
to fit in GPU memory. Specifically, we enable practical usage for an automatic system by targeting efficient real-time mipmap
filtering using compressed textures and adding support for individual mesh voxelizations and resolutions in the same DAG.
Furthermore, the latter increases the texture-compression ratios by up to 32% compared to using one global voxelization, DAG
compression by 10− 15% compared to using a DAG per mesh, and reduces color-bleeding problems for large mipmap filter
sizes.
The voxel-filtering is more costly than standard hardware 2D-texture filtering. However, for full HD with deferred shading, it is
optimized down to 2.5± 0.5 ms for a custom multisampling filtering (e.g., targeted for minification of low-frequency textures)
and 5± 2 ms for quad-linear mipmap filtering (e.g., for high-frequency textures). Multiple textures sharing voxelization can
amortize the majority of this cost. Hence, these numbers involve 1-3 textures per pixel (Fig. 1c).

CCS Concepts
• Computing methodologies → Texturing;

1. Introduction
Texturing is a ubiquitous and core part of 3D modeling and render-
ing. However, standard texturing requires some uv mapping, and
for many scenarios, such as for light-map computations and other
global-illumination parameters, uv unwrapping has to be performed
such that no surface points shareuv coordinates. I.e., the mapping
has to be injective.

UV unwrapping is hard to automate in a universally satisfying

way, since an object’s surface generally cannot be unwrapped with-
out artificial seams and undesired distortion. This causes varying
texture resolution over the surface domain and problems with cor-
rect texel interpolation and mipmap filtering over the seams. The
latter often requires padding between patches and hence, limited
mipmap-filter sizes. Other drawbacks include vertex duplication
and wasted uv space.

For a solution that must be reliable and fully automated, it is at-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0002-5427-7406


Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

tractive to avoid these problems, even at the cost of run-time perfor-
mance. Common examples include architectural visualization and
CAD models. An option is to use a voxel space for the texel map-
pings [BD02; DKB*16; DSKA18; LH06; LK10; CNLE09]. This
avoids uv coordinates, since there is an implicit, injective surface-
to-texel mapping by the surface’s 3D position. If the voxel structure
is sparse with no empty voxels, this mapping may also be bijective,
such that texture space is not wasted. Using voxel space allows gen-
erality of surface models, e.g., triangles, quads, implicit or paramet-
ric surfaces, ISO surfaces, lines, point clouds, subdivision surfaces,
etc. Animated and/or skinned objects are trivially supported by us-
ing the objects rest pose for the texel mapping [BD02].

Dado et al. [DKB*16] and Dolonius et al. [DSKA18] show
that colors stored in a voxel data-structure can be heavily com-
pressed while maintaining good quality and real-time lookup per-
formance. Their underlying geometry data is stored as a Sparse
Voxel DAG [KSA13] that is raytraced to produce an image, but
in this paper we consider using the same data structure only as a
means of storing surface colors, to be used in a standard rasteriza-
tion pipeline. We build on the method by Dolonius et al. [DSKA18]
due to the high compression ratios vs. other real-time formats. Tex-
tures with an injective or bijective surface-to-texel mapping can be
significantly more memory demanding than standard repeated tex-
tures. Therefore, the use of texture compression can be important
for fitting the textures in GPU memory. To aid the reader, Sec-
tion 3 provides a quick recap of how to represent colored voxels
with DAGs.

Nevertheless, directly using the voxel structure presents a num-
ber of problems as compared to traditional texture mapping. Here
is the list of problems, followed by our contributions:

• Using a global voxelization of the entire scene can cause dis-
jointed surface parts to fall into the same voxel and thus
share a texel. This is a classic issue for voxel-based textures
and can manifest itself as color bleeding between nearby sur-
faces [BD02].
• The above problem is even more pronounced when using

mipmap hierarchies and large filter sizes. Voxel colors of sep-
arate surfaces may erroneously be averaged together at coarser
mipmap levels.
• A solution that inherently allows per-mesh resolutions and voxel

sizes can be desirable over explicitly orchestrating fully separate
voxel structures (i.e., DAGs).
• Fast filtered texture lookups are important to maintain real-time

performance. Thus, optimized accesses are vital.

Color bleeding can be avoided by assigning conflicting parts to
separate voxelizations. This is often considered unattractive. In-
stead, solutions such as normal flags that prevent the use of too
high mip levels at problematic regions are favored [BD02].

In contrast, to target the first three of the listed problems, we cre-
ate a voxelization per mesh by default, potentially of individual grid
resolutions and voxel sizes, and develop a solution that can store
these separate mesh voxelizations in the same DAG despite resolu-
tion (and hence DAG-height) differences. The DAG contains a root
per mesh, but lower nodes are typically shared. A DAG-traversal
path then becomes unique for each voxel and mesh, which auto-
matically prohibits neighboring voxels of separate meshes to in-

correctly be blended together during mipmap generation. This al-
leviates filtering with filter sizes up to full mesh sizes, which is a
problem for standard uv-unwrapping-based methods (Mesh Color
Textures being an exception [Yuk17]).

If disjoint parts of a mesh share a voxel, the color-bleeding prob-
lem remains. When manual intervention is allowed, an artist could
split the mesh into submeshes [BD02], thereby creating a separate
voxelization per such submesh. Alternatively, undesirable original
seams between meshes can be removed by merging the meshes,
thereby smoothing the seams by allowing filtering over the original
mesh borders.

Storing all voxelizations in the same DAG improves the com-
pression of the geometric information. As we will demonstrate,
allowing individual voxelizations per mesh increases the texture
compression of the voxel colors by up to 32 percent.

Using 16 individual texture lookups for quadlinear-filtering (two
mip levels times eight texels) is costly [DSKA18]. Instead, we
demonstrate how to optimize the magnification- and minification-
filtering. For full HD, the timings are as follows: 2.5±0.5 ms for a
custom multisampling filter, 5±2 ms for quad-linear mipmap filter-
ing, and about 1 ms for nearest neighbor filtering. The quad-linear
filter would typically be used for high-frequency textures and is a
factor 2.5± 0.2 times faster than a straight-forward solution that
just takes 16 individual texture lookups. The multisampling filter
could, for instance, be used for more low-frequency textures.

With deferred shading, one filtered voxel lookup per pixel (or a
few for transparency) is realistic. Furthermore, the computational
overhead for multiple textures, each compressed individually but
sharing voxel structure, is relatively small. Our method can also
be used side-by-side with standard uv-based hardware-accelerated
texturing.

2. Related work

A vast set of methods have been proposed to perform automatic
uv unwrapping and target the problems of seams and distor-
tions [SPGT18; PTH*17; SLMB05; ZMT05; KLS03; SWG*03;
SCGL02; LPRM02; DMA02]. An advantage of those methods is
that after the uv unwrapping has been done, they can typically uti-
lize, to a varying degree, the existing texture-filtering hardware,
thus making real-time texture lookups and filtering very fast dur-
ing rendering.

For surface parameterization, there are two surveys [HPS08;
SPR06]. Yuksel et al. provide a recent overview of previous work
on alternatives to standard texture mapping [YLT19; TYL17].

Hiding Seams Two reasons why a uv map of a continuous surface
requires cuts, or seams, are: 1) undesired texture-resolution distor-
tion, and 2) when the surface is not topologically a disk. Due to
its added memory cost, an undesirable feature inherent to creating
seams during uv unwrapping is vertex duplication, i.e. that vertices
may have to be split into two or more vertices with separate uv
values. Additionally, the splits cause problems with visible seams
when doing mipmap filtering over their borders.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

By reassuring that topologically adjacent triangles with an arti-
ficial seam between them are separated in uv space by a pure inte-
ger translation and possibly rotations of 90 degrees and duplicating
these triangles’ texel neighborhoods, the seams can be made invis-
ible on the screen, despite filtering [RNLL10]. However, this puts
restrictions on filter sizes corresponding to the width of the added
texel neighborhoods.

For purely cylindrical or toroidal texture maps, Tarini presents
a very simple and efficient solution without the need for dupli-
cate vertices and only with a small modification in the vertex
and fragment shader [Tar12]. By enforcing quadrilateral surface
patches mapped to square charts in texture space, Purnomo et al.
achieve seamless mipmap filtering [PCK04]. Liu et al. create a lin-
ear operator where its null space represents seamless texture bor-
ders [LFJG17].

Connectivity-based representations Ptex has become increas-
ingly popular, where the idea is to assign a texture per face,
and comes in both offline [BL08] and real-time flavors [McD13;
MB11]. Mesh colors [YKH10; Yuk16] define an implicit uv map-
ping per triangle by using only one resolution value per triangle.
Filtering over triangle edges can also elegantly be handled by as-
suring that texels or colors along triangle edges are centered on the
edges and vertices.

Mesh Color Textures [Yuk17] enable artifact-free filtering also
for mip-map levels coarser than a color per vertex, by for those
levels compute pre-filtered per-vertex colors but keeping the stor-
age resolution to a color per vertex. For high tessellations, on par
with the texture resolution, the storage overhead could be larger
than the 33% of standard mip maps. However, standard hardware
texture lookups can be used, via a custom four-dimensional uv
format. Mallett et al. [MSY19] introduce a hardware modifica-
tion for anisotropic filtering. A mesh-color texture, at least for its
finer mipmap levels, visually contains a similar block coherence as
Dolonius et al. [DSKA18] that we use.

Volume-based Parametrizations PolyCube-Maps suggests split-
ting objects into cubic regions of which the surface colors can be
mapped onto cube maps [THCM04]. Lefebvre and Dachsbacher
suggest using a few orthogonal 2D maps per octree node [LD07].
Volume-Encoded UV-maps automatically compute an injective
mapping from 3D space to 2D space by assigning uv coordinates in
a coarse 3D grid [Tar16]. Cuts may still occur, and seam artifacts
could appear when using filtering. The technique is less general
when tiny features are important, compared to the resolution of the
3D uv texture.

Sparse Volumetric Textures Adaptive texture maps [KE02] re-
move unused texture space by packing texture tiles, thereby dis-
carding unused tiles, and adding an indirection lookup. Benson and
Davis [BD02] suggest using an octree for mapping and storing of
texture colors. Then, Lefebvre et al. [LHN05] show how to adapt
this to the GPU. Brick maps (e.g., in Renderman) use a brick of,
for instance, 83 sparse voxels per octree node, which also signif-
icantly reduces the depth of the tree [CB04]. It is reasonable to
expect the hardware-friendly layout to enable speed optimizations

we cannot use, at the cost of compression capabilities (e.g., inter-
brick compression would be difficult). Perfect Spatial Hashing cir-
cumvents the expensive tree traversal by instead using a hash func-
tion [LH06]. However, the precomputation times and hash-table
overheads can be substantial, and although that method and the
later work by Garcia et al. [GLHL11] strive to maintain spatial co-
herency, their solutions do not directly lend themselves to efficient
usage of compressed textures in real time.

Gigavoxels [CNLE09] target real-time voxel rendering of Sparse
Voxel Octrees (SVOs) [LK10] with stackless traversal using ray
casting. SVOs can be compressed both geometrically [KSA13;
VMG16] and for the colors [DSKA18; DKB*16] by merging
identical subgraphs into a sparse voxel DAG and adding a non-
obstructive mapping from node to texel.

Compared to directly rendering a voxel representation, our ren-
dering is performed using the artist’s original triangle model. It can
often be sufficient to use a significantly lower texture resolution and
triangle-tessellation resolution (the latter perhaps by two orders of
magnitude) than a corresponding voxel resolution would require
for acceptable surface representation without apparent blockiness.

3. Recap of Sparse Voxel DAGs with Colors

A Sparse Voxel Octree (SVO) is an octree where each node repre-
sents a voxel and its color. A Sparse Voxel DAG achieves a high
compression ratio by considering the geometric information only
(empty or non-empty voxel) and removing duplicates of identical
subgraphs recursively bottom up [KSA13].

Storing color information in the nodes would lower the probabil-
ity of having identical subgraphs. Instead, per-voxel colors are sup-
ported by, for each DAG node, storing a relative color-offset value
that directly corresponds to the amount of non-empty voxels in that
node’s subgraph (1 for a leaf). Since this information only depends
on the geometry, it does not affect the compression possibilities.
The colors are stored separately in a one- or two-dimensional tex-
ture [DKB*16; DSKA18].

A DAG is traversed identically to an SVO. However, by a care-
ful summation of the color-offset values during traversal from the
DAG root to a voxel location, the color index can be retrieved.
The index represents a depth-first traversal order of the SVO nodes
along a 3D Morton curve. This preserves significant amounts of
the two-dimensional surface-color coherence, which is essential for
compression. Dolonius et al. implement a custom real-time, block-
compression format of the resulting one-dimensional voxel-color
array (see Section 5.1-Decoding colors).

4. Method Overview

Voxelization Each mesh is voxelized to an individual DAG that
stores the mesh colors in voxel space. We create a non-empty voxel
for each voxel that intersects the mesh surface. If the surface al-
ready has an assigned texture pattern that should be transferred into
the voxel colors, then we initiate the voxel color to a filtered value
of the texels falling inside the voxel.

If a mesh has more than one texture, for instance representing

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

global-illumination information of separate frequencies and thus of
different resolutions, we generate a DAG per resolution and mesh.
Alternatively, we recommend using the same resolution for all tex-
tures of a mesh and relying on the texture compression being higher
for data of lower frequencies.

Either way, when using the voxel structure, it would be easy to
do a trilinear-filtered texture lookup at a 3D position in space if
the voxel colors would be stored at the voxel corners or if at least a
neighborhood of 23 voxel colors exist [BD02]. However, that would
require storing colors not only in the geometry-containing voxels
but also in many of their neighbors, which could drastically in-
crease the memory cost. Instead, we only store a color at the center
of surface-intersecting voxels and modify the logic of the real-time
trilinear filtering accordingly.

Merging DAGs Next, we merge all generated DAGs into one and
then compress the voxel colors using the texture compression.

Rendering During real-time rendering, we render each mesh to
a shared G-buffer using hardware rasterization with the fragment
shader outputting an encoded representation of the meshID, the
sample’s 3D position, and desired filter level. It should be noted
that this information is independent of the number of global tex-
tures used and their individual texture resolutions.

Color lookups Finally, in a deferred-shading pass, filtered color
values per pixel are retrieved using a DAG-traversal kernel and
texture-decompression kernel implemented in CUDA. The latter
kernel is run once per used global texture.

5. Implementation

Construction of data For each mesh of a scene, we create a sep-
arate DAG with its compressed one-dimensional texture and later
merge all of them into one DAG. The textures are simply merged
by appending them sequentially.

Double-sided surfaces with a per-face texture are treated as a
mesh per face (this is also common in modeling programs). The
two DAGs are then automatically collapsed into one (as described
in the next paragraph), keeping just the two individual roots and
thus maintaining individual voxel colors per face.

Merging DAGs of different heights When meshes have indepen-
dent resolutions, their associated DAGs can have different heights.
However, it is possible to merge all DAGs into one DAG by vir-
tually aligning their leaf levels (i.e., regarding their leaf levels as
being at the same depth) and accordingly letting their roots start
at different heights (see Figure 2, upper). Then, level by level, the
DAG nodes are merged into one new combined level by appending
and then reducing them. As for the original algorithm [KSA13],
the non-unique nodes have their parent pointers updated to point to
the surviving node instance, thereby exploiting the added compres-
sion possibilities.

Put differently, we first concatenate all the DAGs’ leaf levels into
one new leaf level. Secondly, we remove identical node duplicates.
Then, we repeat these two steps identically for the next level above,

Figure 2: Upper) Separate DAGs of different heights, i.e., corre-
sponding to different voxel resolutions, can be merged into one
combined DAG by first aligning their leaf levels and then merging
all levels. Lower) We track each root’s new position in the combined
DAG by using an array of elements (RX, LY), where RX means aa
new index for the root of DAG X and LY its new level, Y.

thereby merging that level of all DAGs into one new concatenated
level. This is repeated level by level until there are no higher levels
for any of the DAGs.

Once we have aligned the depths of all DAGs’ leaf levels, our
approach is practically identical to the original algorithm by Kämpe
et al. [KSA13]. However, we also keep an array of node indices
specifying the root node for each separate mesh in the DAG. These
root indices will therefore often point to nodes not residing at the
root level of the resulting combined DAG (see Figure 2, lower).

Using the data During triangle rasterization, a sample’s voxel-
space position is used to perform the filtered color lookup. For de-
ferred shading, we use a G-buffer to store, per pixel, the index to the
mesh’s root-node, the voxel-space coordinate, and the desired filter
level. We use a 32-bit float per x, y, z to describe the coordinate,
i.e., typically with much higher precision than the voxel resolution,
in order to represent a sub-voxel location for the sample of the sur-
face. This index and position is later used in a CUDA kernel that
traverses the DAG from the root specified by the root index and re-
turns the desired color index given the path and mipmap level (see
Section 5.1). If G-buffer size is an issue, there is room for optimiz-
ing the per-pixel information, but we have left that out.

Minification Colors are stored in all nodes of the DAG. A parent’s
color is the average of its children. We sample the level above and
below our desired mip level and do an interpolation on the frac-
tional part. The mip level, m, is calculated, from the screenspace
derivatives of the position, here called ∂F

∂x and ∂F
∂y , as:

m = log2(max
(∥∥∥∥∂F

∂x

∥∥∥∥ ,∥∥∥∥∂F
∂y

∥∥∥∥))
For the analogy to standard trilinear mipmap-filtered texture

lookups, we have to perform quad-linear filtering, since we do the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

filtering in 3D voxel space and not 2D texture space. For each of
the two mipmap levels closest to m, we perform trilinear filtering of
the existing colors in the surrounding block of 23 voxels. Then, we
interpolate between the two resulting colors, based on the fractions
of m and 1−m. Since we access up to 23 colors for both mipmap
levels, this results in up to 16 texel accesses. However, we optimize
these accesses heavily.

The implementation will be detailed in Section 5.1. There, we
will also describe a faster, approximate option based on multisam-
pling that only performs four texel accesses per fragment on av-
erage. It is beyond our scope here to seek the best multisampling
filter, since that depends on a huge number of factors and is a vast
topic [MN88; MP11]. Instead, the intention is to present one fil-
ter that we empirically found to work well for low-frequency tex-
tures, demonstrating that higher performance than for full tri-linear
mipmap filtering can be achieved and with satisfying quality.

Magnification When m≤ 0, we do a trilinear-filtered lookup using
only mipmap level zero. This requires up to 8 voxel-color accesses,
i.e., half the cost of filtering between two mipmap levels.

5.1. CUDA kernels

A naive tri-linear filtering for one mipmap level would perform
eight independent lookups from which a weighted average is cal-
culated. We propose two methods to accelerate this computation.
The first method utilizes caching to avoid unnecessary traversals
and global memory reads. The second is an approximate solution
where we multi sample in screen space in order to reduce the num-
ber of required samples. While the second one shows some aliasing
artifacts for high-frequency textures, there is little to no artifacts for
lower frequencies such as e.g., light maps.

Our trilinear sampling is composed of two parts. First, we cal-
culate an array of up to eight color indices using a CUDA kernel.
Secondly, this index array is used by a separate kernel to decode
the colors and compose the final color by a weighted average.

To achieve mip mapping, the kernels are run twice, once for each
relevant mip-map level. While it is indeed possible to do all sixteen
lookups in one kernel, we still resort to two kernel calls in order to
reduce register pressure to achieve maximum occupancy.

Color index lookup For a filtered sample in a voxel block of size
23, we need a fast way to find the ≤ 8 voxel-color indices. In our
implementation, the DAG’s voxels are stored in a Morton order
where x is the most and z the least significant direction (z→ y→ x).
Given a sample, s, with its path, the voxel position of the bottom,
lower, left corner of the block is given as p = bs/2L−0.5c, where
L ≥ 0 is the desired mipmap level (i.e., DAG level), counting the
leaf level as level zero.

The important issue is to minimize the DAG traversal and maxi-
mize cache coherence by visiting the eight voxels along their global
Morton order. The voxels’ Morton codes are trivially found by bit
swizzling their x,y,z coordinates. Therefore, it would be possible
to sort the eight voxels on their Morton codes and visit them in that
order. However, the following approach is faster, with identical re-
sult, where we utilize that the sorted order can be found by only
sorting three values based on properties of the voxel position p.

To maximize subgraph coherence, when visiting the eight vox-
els, we want to traverse any immediate DAG siblings before voxels
belonging to another DAG parent, in order to avoid traversal from
the root in favor of the closest common parent. In our block of 23

voxels, any two voxel neighbors in direction i, where i is x, y, or
z, will share parent at some specific level, li. Hence, we can use a
traversal stack of only three elements, each storing a parent-node
index.

Additionally, if a,b,c is some permutation of the step dimensions
x,y,z, the Morton-visiting order of the eight voxels can be written
as [(p),(p+ â),(p+ b̂),(p+ â+ b̂),(p+ ĉ),(p+ ĉ+ â),(p+ ĉ+
b̂),(p+ ĉ+ â+ b̂)], where â, b̂, ĉ are the unit vectors for a,b,c. We
will now explain how to compute the correct permutation order,
a,b,c for the block.

We can sort p’s x, y, and z coordinates based on their first-bit
cleared, fbc(), i.e., first zero-bit position from the least-significant
bit. In other words, we sort on how much a direction increases the
position along the Morton curve. The sort can be done in only three
compare-and-swap instructions, implementing a small stable sort
that utilizes that, in the case of equality, a step in z is smaller than a
step in y, which is smaller than a step in x, according to the Morton
order we use. This will result in some order fbc(a′) < fbc(b′) <
fbc(c′), where a′,b′,c′ are the values of p’s x,y,z coordinates. This
directly gives the requested permutation a,b,c of x,y,z.

Since we traverse directly neighbouring voxels in a sorted or-
der, we also know in which order to read the stack. If we define
the stack elements as ea,eb,ec where the subscripts correlate to
the ordering of the permutation, i.e., ea for the smallest change
and ec for the largest, then we read the stack elements in order
{ea,eb,ea,ec,ea,eb,ea}. Finally, we can compute the parents’ level
offsets w.r.t. the sample level as od = fbc(pd) +1,d ∈ {a,b,c} (Fig-
ure 3). Thus, we know exactly at what level to update each stack
element.

During the traversal and at each level, we check if we should
cache the current node index (parent) and the current color index,
for each direction. When traversal has finished for a voxel position,
we write its color index to texture memory if there exists geometry
for that voxel, and a no-index sentinel otherwise. In case of the
latter, the index caching during the traversal may still be beneficial
for the next voxel. For compression efficiency, DAGs often use leaf
nodes of (4x4x4) voxels [KSA13]. If we traverse to the bottom of
the DAG, the next voxel of our 23 block would likely fall in the
same (4x4x4) leaf. Thus, we also cache the 64-bit leaf mask in
order to avoid unnecessary reads from global memory.

Decoding colors Our decoding algorithm is, in essence, the same
as for one texel access at a time [DSKA18] but optimized for a
Morton-ordered sequence of texel indices (e.g., eight). For the con-
venience of the reader, the next paragraph presents a summary of
the original algorithm to retrieve the color for one texel.

All texels are stored in a one-dimensional sequence along a
three-dimensional Morton order in voxel space and are then com-
pressed by a custom block-compression method, as follows. The
texels are sequentially split into compressed macro blocks of 16K
texels, where each macro block is composed of smaller blocks. The
macro block is composed of an index to the first block within its

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

Figure 3: Coherent sample lookups - finding the step order (green)
of eight sample indices (blue), p1, ..., p8, along a global Morton
order (z→ y→ x). Assume the global index for p is (0,1,1). Then,
p1 = (0,1,1) and p8 = (1,2,2). Since fbc(p1x) < fbc(p1z) ≤
fbc(p1y), we have a sample ordering as (x→ z→ y). As fbc(p1x)=
0, we also know that the shared parent for p1 → p2, p3 → p4,
p5→ p6, and p7→ p8 is one level above; i.e., for p1→ p2, it is
the parent with children m1,...,m8. Similarly, since fbc(p1z)= 1, we
know that the shared parent for p2→ p3 and p6→ p7 is two levels
above. The same holds for p4→ p5, as fbc(p1y)= 1.

16K range and an index to a global array of per-texel weights. Each
block, within the macro block, consists of a header specifying two
colors used for interpolation, a texel-index offset representing the
block’s start-texel index in the macro block, a weight-index offset,
and the number of bits per weight for that block (which may be
zero). The algorithm itself performs a binary search on the blocks
using the texel-index offset to find the block responsible for the
texel. Finally, weights and end-point colors are extracted and are
used to interpolate the final color.

Here follows the description of our new optimization. From the
color-index-lookup step, we have received eight Morton-ordered
voxel samples, as voxel locations and their texel indices, and as
such the texel indices are ordered as well. Invalid samples (i.e.,
for empty voxels) are already marked with a no-index sentinel. We
have also cached, in texture memory, the voxel-sample order and
the fractional part of the surface-sample path (i.e., for the surface
position of which we are computing a trilinear-filtered color). These
will be used for the trilinear weighting of the voxel samples when
their colors have been decoded.

A block generally spans a range of texels. Thus, we can expect
several of our desired samples to share block, especially at lower
mip-map levels. Therefore, when we decode a voxel sample, we
also cache all of the current block header (colors and metadata) and
the metadata of next block headers to avoid reads from global mem-
ory. Since the texel indices are sorted, we can first check the next
sample’s index against the index stored in the next cached block
header. If it is lower, the texel index belongs to the same block and
no binary search is required. If the texel index does not belong to
the same block but is still contained in the same macro block, then
we can at least cache the lower bound of the binary search in order

Figure 4: Caching block headers during sample lookups. In this
example, the first sample (S1) of up to 8 samples (S1-S8) is found
by a binary search in macro block M1 and thus between the blocks
specified by header H1 and H4. Then, to find S2, no new binary
search is necessary, since S2 is in the same block as S1. To find
S3 only a binary search between H3 and H4 is needed, as S2 is
the latest sample. Eventually, to find S7 that is located in another
macro block (M2), a new binary search (between H5 and H7) is
needed.

to save some iterations for the next voxel sample. Again, this is also
possible since the indices are sorted (see Figure 4 for an example).

We decode and weight the data for the first decoding pass by
using the before-mentioned cached data. Similarly to bilinear fil-
tering, the trilinear filtering calculates a weighted average of the
eight neighboring voxels. Our weight for a sample is wi = (1−
dix)∗ (1−diy)∗ (1−diz) , where di is the component-wise distance
from the voxel center to the sample position, which is trivially de-
rived from the fractional part of the original sample position. Since
not all samples are valid, they can be discarded when calculating
the weight. I.e., for the eight samples with colors, Ci, i ∈ [0,7], and
weighs, wi, where χi is 1 for valid samples and 0 otherwise, we
have the trilinear sample, S, as:

S =
∑χiCiwi

∑χiwi

In the second pass, for the next mipmap level, we also read back
the result of the first pass to perform the final mipmap weighting.

Approximative multisampling Quad-linear mipmap filtering is
not always necessary for smooth and flicker-free filtering, depend-
ing on the maximum frequency present in the texture. Arguably, for
smooth-enough textures, even a nearest neighbor filter will suffice.
To demonstrate that higher performance with maintained quality
often can be achieved, e.g,. for scenarios such as baked light maps,
we will here present a filter based on multi sampling, which we
found to work well, quality-wise, for our test scenes while doubling
the texture-lookup performance.

We can speed up the minification filter by distributing the tex-
ture samples according to the classic screen-space pattern shown in
Figure 5. This can also be seen as a shifted Quincunx [01] pattern
and bears resemblance to Flipquad [Ake02]. This allows a pixel to
effectively retrieve four filtered texture samples at the cost of two.
Additionally, for each filtered texture sample, we use linear filtering
between the two nearest mipmap levels and nearest-neighbor filter-
ing within each level. The color-index-lookup kernel is launched
once for each pixel and processes two sample positions and both
mipmap levels, i.e., it processes four texel accesses in total. Since
the samples are now in screen space, the two mipmap levels of a
sample correspond to a child and its direct parent. Hence, for one
such path, no stack is required.

We only use the approximative multisampling for minification.
For magnification, we use trilinear filtering at mip level 0, since
that is both fast and correct. As minification often will query nodes

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

higher up in the DAG, the stack will be less useful. Therefore, we
drop it completely and start from the root for both sample positions,
in favour of letting the compiler allocate the registers more freely
elsewhere.

In order to maximize cache coherency, we want to perform the
sample lookups along the Morton order (just as for quadlinear fil-
tering kernel). This can be achieved by presorting the indices or
processing them in ascending order, where we choose the latter.
For the final weighting, we perform a gather pass where the sam-
ples are weighted by the distance from their voxel center to the
surface-sample position (see Figure 5).

Figure 5: Our multisampling scheme for
custom minification filtering. Gray boxes
are pixels, the blue dot is the pixel center
(sample position), green dots are multi-
sample positions, yellow boxes are voxels,
and orange dots are voxel centers.

6. Results

We present the results for three scenes, highlighting different prop-
erties of our algorithm. First, we have the FLIGHTHELMET scene,
where three textures are used: albedo, normals, and a texture with
occlusion, roughness, and metallic packed into three components,
to show that we can achieve a similar resolution as standard texture
maps with a lower memory overhead, as there is no wasted texture
space.

We also show that color compression can be improved by parti-
tioning the mesh into separate sets since that will present a higher
coherency of similar attributes. Furthermore, we show that such
partitions can avoid the color-bleeding artifacts for large filter sizes.
As the artist usually already has a model consisting of different
parts, the only overhead is specifying the faces of different parts
where we want to avoid color bleeding, e.g., for nearby disjoint
surface parts, such as for the glasses and straps (see Figure 6).

Alternatively, and contrary to partitioning meshes to avoid color
bleeding, the visibility of seams between intersecting geometry can
be reduced by letting different meshes share the same mesh parti-
tion (see Figure 7).

Figure 8 compares nearest and linear filtering modes for regu-
lar textures and DAGs at a similar resolution. Figure 9 compares
the frame-to-frame flickering between multisampling and quad-
linear filtering. The straps in the textscFlightHelmet with a regular
high-frequency pattern cause aliasing for multisampling, especially
when the pattern is aligned diagonally to the samples. (As a trade-
off, it is possible to remove the visible artifacts for multisampling
by biasing the mip-map level one level up at the cost of over blur.)
For the low-frequency regions, the flickering is undetectable.

In the second scene, SKYHOUSE, we have baked irradiance to
show that the multi-sampling scheme is highly suitable for such
scenes. The low-frequency information also lends itself well to
the texture compression. The third scene, THEGREATDRAWING-
ROOM, is a scanned scene with one large high-frequency texture,
which is problematic to uv unwrap.

(a) Not separated. (b) Separated.

(c) Not separated. (d) Separated.

Figure 6: Benefits of separating meshes. Top row is FLIGHTHEL-
MET and bottom is SKYHOUSE. As can be seen in (a) and (c) the
underlying geometry causes unwanted bleeding, e.g., in (a) where
we have the dark colored glass close to the white rim, or in (c)
where parts on the interior with no irradiance causes color bleed-
ing, which we see from an interior supporting beam being too close
to the exterior roof.

(a) Texture - Geometry seam. (b) DAG - Seamless.

Figure 7: By merging separate meshes into the same mesh parti-
tion, the filtering in voxel space can reduce undesired seams com-
pared to pure filtering along surface space.

6.1. Compression

Depending on the model, storing one DAG for the entire mesh can
require more memory than storing uv coordinates at its vertices;
on the other hand, using a DAG no memory is wasted to store un-
used texels in the texture image. Also, the number of uv-coordinates
depends on the resolution of the mesh (for example, it roughly
quadruples if the mesh undergoes a subdivision step), whereas the
DAG size depends only on the texture resolution, and is usually
relatively small (especially for planar surfaces).

In Table 1, we compare the total size of DAG + colors against
standard textures + uv attributes. For comparison purposes, this is
done without texture compression for any of the methods. All tex-
els are of roughly the same projected size, and the meshes are vox-
elized such that the average distance in texture space is the same
in voxel space, i.e., the original texture resolution is roughly main-
tained. We also compare against a virtual, perfect uv mapping with-
out wasted texels between uv patches. I.e., all unused texels are
discarded in that comparison (see Table 1 - Used texels). Without
texture compression, we see that the DAG + colors are around 0.7×
smaller than the textures and around 1.5× larger if we had a perfect
uv map.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

FLIGHTHELMET SKYHOUSE
THEGREAT

DRAWINGROOM

Mb Mb Mb
DAG 6.4 5.1 18.2
UV 0.4 0.2 4.0
Factor 16.8× 23.7× 4.6×

Mb (#elements) Mb (#elements) Mb (#elements)
Voxels 68.7 (22.9M) 48.7 (16.2M) 177.1 (59.0M)
Texture / Used texels 122.7 (40.9M) / 51.5 (17.2M) 67.1 (22.4M) / 36.3 (12.1M) 268.4 (89.5M) / 129.3 (43.1M)
Factor 0.6× / 1.3× 0.7× / 1.3× 0.7× / 1.4×
Total 0.6× / 1.4× 0.8× / 1.5× 0.7× / 1.5×

Table 1: Comparing memory consumption of DAG + Voxels (colors) against UV + textures, without texture compression for either method.
Factor corresponds to DAG/UV and Voxels/Texels, respectively. Total represents (DAG+Voxels)/(UV + Texels).

(a) Texture - Nearest. (b) DAG - Nearest.

(c) Texture - Linear. (d) DAG - Linear.

(e) Texture - Nearest. (f) DAG - Nearest.

(g) Texture - Linear. (h) DAG - Linear.

Figure 8: Comparisons of nearest and linear filtering modes for
regular textures and DAG. The nearest filter selects the closest
mipmap and nearest texel within.

Merging DAGs We have shown how to represent individual DAGs
by one common DAG. In Table 2, we compare sizes and compres-
sion ratio between voxelizing the full scene as one global mesh
in one DAG vs. voxelizing separate meshes into DAGs and then
merging them into one. We chose to present the data for the irradi-
ance texture of SKYHOUSE, representing a low-frequency texture,

(a) Frame 1. (b) Frame 2. (c) Diff. (d) Diff ×10.

Figure 9: Evaluation of multisampling flickering during motion for
high- and low-frequency regions. (a) Frame 1 with multisampling.
(b) Frame 2, with the multisampling offset such that the screen sam-
ples land 0.5 pixels from frame 1. (c) bottom right: Difference of
frame 1 and 2 aligned to demonstrate scale of flickering at high-
frequency regions and no detectable flickering at low-frequency re-
gions. (c) top left: Diff. of the same but using quad-linear filtering.
(d) 10× amplified difference.

and the albedo texture of FLIGHTHELMET, representing a high-
frequency texture. As THEGREATDRAWINGROOM is a scanned
scene, the mesh proved cumbersome to manually separate in a rea-
sonable way and, therefore, is left out in this comparison.

We want to highlight that, while we gain 10−15 percent of DAG
compression by merging compared to not merging, the resulting
sizes also become close to as if we had never separated the meshes
in the first place. More noteworthy is the fact that by separating
meshes, there is also a positive impact on color compression by
12−32 percent, which is a bonus besides avoiding color bleeding.

6.2. Timings

To illustrate the benefit of the optimizations, Table 3 presents tim-
ings for the three different test scenes, comparing our quad-linear
mipmap filtering and multi-sampling scheme vs. nearest-neighbor
filtering. The nearest-neighbor filter selects the closest mipmap and
nearest texel within. We use an RTX2080 for all the tests, at a res-
olution of 1920×1080.

Quad-linear timings Our experiments indicate that for the index
computation, our optimized tri-linear version is approximately only
3 times slower than for nearest sampling, whereas a naive imple-
mentation, requiring 8 independent lookups, would be expected to

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

Size in Mb Size in millions Size in Mb Compression
DAG before / after merge Number of colors Raw / compressed colors % of original size

F
L

IG
H

T
H

E
L

M
E

T 51
23 One DAG 0.5 1.5 4.5 / 0.9 20.3

Separate DAGs 0.66 / 0.60 1.6 4.7 / 0.7 15.4

10
24

3 One DAG 1.9 6.2 18.5 / 2.9 15.8
Separate DAGs 2.3 / 2.1 6.4 19.2 / 2.5 12.9

20
48

3 One DAG 6.7 25.0 75.1 / 8.9 11.9
Separate DAGs 7.7 / 6.9 25.6 76.7 / 7.9 10.3

40
96

3 One DAG 23.0 101.2 303.5 / 25.2 8.3
Separate DAGs 25.3 / 23.2 102.2 306.5 / 22.6 7.4

S
K

Y
H

O
U

S
E

51
23 One DAG 0.54 1.2 3.7 / 0.8 21.3

Separate DAGs 0.74 / 0.64 1.3 4.0 / 0.7 17.1

10
24

3 One DAG 1.8 5.0 15.0 / 2.0 13.0
Separate DAGs 2.4 / 2.0 5.2 15.8 / 1.7 10.7

20
48

3 One DAG 6.2 20.4 61.1 / 4.8 7.9
Separate DAGs 7.6 / 6.3 20.8 62.3 / 4.1 6.6

40
96

3 One DAG 19.8 82.0 246.0 / 11.5 4.67
Separate DAGs 22.7 / 19.6 82.8 248.5 / 9.7 3.9

Table 2: In the FLIGHTHELMET scene, the high-frequency albedo texture is used, and in SKYHOUSE, we use the low-frequency irradiance
texture. Both are compressed using an error threshold of 6.4 for color ranges in [0,255].

be 8 times slower. The color decoding of eight samples is around
3− 4× slower than one, instead of 8. In total, for the two trilinear
mipmap samples, we see that together they are only 6−7× slower
than one nearest-neighbor texel lookup instead of 16 times.

Multisampling timings One multi-sampled fragment requires the
calculation of four texel samples (two per pixel times two mipmap
levels) for the eight weighted samples per pixel (four per pixel
times two mipmap levels), and are meant to approximate the 16
samples needed for a quad-linear mipmap-filtered sample. For the
sample-index lookup, the two mipmap levels correspond to a child
and its immediate parent, which can be fetched in one traversal.
Together with our caching, the sample-index lookup for 4 such
indices is only about 1.5− 2× slower than one nearest sample
(i.e., 2− 2.7× faster per sample). Computing only 4 samples per
pixel instead of 16 results in a total index-computation speedup of
8−10×.

There are also fewer samples to decode (4 compared to 16 for
quad-linear filtering). The timings in Table 3 show that these four
are only 2.5− 3× slower than one nearest-neighbor sample, i.e.,
5.3−6.4× faster than 16 nearest samples.

In total, combined with trilinear sampling for magnification, we
see in Table 3 that multisampling is 2.5−3.5× slower than 1 near-
est sample, i.e., 4.5− 6.4× faster than 16 nearest samples. For
all our timings, the numbers are mostly bound by global-memory
reads.

Multiple textures sharing voxelization The major cost is the
DAG traversal to retrieve the color indices; the decoding step is
cheap (see Table 3). Note that FLIGHTHELMET uses three sepa-
rate quad-linear-filtered textures in < 5 ms in total. The decoding
step is optional when compression is not needed, in which case the
only overhead would be reading the data directly from memory and
weighting the samples, thereby pushing the numbers further to our
favour. However, we do not exploit this opportunity in the reported
numbers.

7. Discussion

Filtering at high mipmap levels For traditional texture maps,
color bleeding problems can occur when the filter includes texels
from disjoint texture patches. In our case, color bleeding occurs
whenever two disconnected parts of the surface happen to share
one voxel.

Despite a separate voxelization per mesh, errors could still occur
internally for those meshes, but the problem is reduced since indi-
vidual meshes often contain more surface regularity than a whole
object and such a mesh perhaps also shares a similar continuous
texture pattern over its surface.

Another problem is that, under extreme minification filters, when
the filter size is comparable to the mesh size, the color of back-
facing parts of the surface, which are occluded, will wrongly con-
tribute to the averaged color of the visible parts. This minor limita-
tion is shared by most other texture mapping approaches, including
the standard one.

Splitting a mesh into sub-meshes to avoid color bleeding in one
region will disable filtering over the new submesh borders. This
is often undesirable. We believe that these seams can be automati-
cally removed in a preprocess of the DAG and mipmap generation,
using some memory overhead but without render-time overhead.
However, this remains as future work.

Other Limitations Our method is significantly more computa-
tionally heavy compared to traditional texture mapping. A typi-
cal application is to store post-modeling information, such as au-
tomatically computed light maps or other global-illumination in-
formation. The texture compression can be attractive for material
textures. Either way, since we use a DAG root per mesh, creat-
ing a DAG from a selected combination of DAG-converted meshes
is done by essentially appending their node levels. The inter-DAG
compression is optional, with speed limited by the GPU radix sort-
ing (in the order of 1B nodes/s). The color-index information and
the compressed per-mesh textures are unaffected during this pro-
cess. While not being part of our contributions, the texture com-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

Snapshot of the timings. First / Middle / Last.

FLIGHTHELMET SKYHOUSE DRAWINGROOM

Q
ua

dl
in

ea
r

M
ul

tis
am

pl
e

N
ea

re
st

Table 3: Timings for different scenes. For the FLIGHTHELMET scene, we decode three textures: RGB albedo, RG normals, and an RGB PBR
material storing occlusion, roughness, and metallic. The SKYHOUSE scene decodes one RGB texture of baked irradiance. The THEGREAT-
DRAWINGROOM scene decodes scanned RGB data in one texture.

pression takes in the order of a few seconds for our non-optimized
single-threaded CPU version. Voxelization and DAG compression
takes about 1 ms per 1M voxels and thus in the order of tens of
milliseconds for our reported scenes and resolutions.

Voxel-based methods such as ours do not target texture repeti-
tion. Tangent-space normal maps require information for tangent
vectors. One method is to store tangents in the G-buffer, using the
original (non-injective) uv map that typically is present if a tangent
normal map is present.

Anisotropic Filtering We have not explored anisotropic filter-
ing [MSY19]. Our multisampling scheme, however, uses four inde-
pendent mipmap-filtered texture lookups per pixel, each with lin-
ear filtering between the two nearest mipmap levels and nearest-
neighbor filtering within each level. While this could be easily ex-
tended to more samples, each of up to quadlinear filtering, efficient
full 16× anisotropic filtering that does not just linearly increase
costs requires further research.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

8. Conclusions

We have demonstrated how to achieve uv-free texturing using
sparse voxel DAGs with compressed textures. This comes at the
cost of not being able to use fully hardware-supported filtering.
We show how to optimize magnification and minification filtering
2.5±0.2 times for quad-linear mipmap filtering, e.g., achieving 1-3
texture loopkups per pixel in full HD at 5±2 ms. With our custom
multisampling filter (for low-frequency textures), the cost is only
2.5±0.5 ms.

We also explained how to extend the DAGs to handle different
resolutions at separate regions by storing several individual DAGs
of different heights in one combined DAG, while maintaining full
compression capabilities. On top, it lowers problems with large fil-
ter widths and improves the texture-compression ratio by up to 32
percent for our test scenes.

9. Acknowledgments

This work was supported by the Swedish Research Councilunder
Grant 2014-4559. The FLIGHTHELMET scene is distributed in the
glTF Sample Models, from the Khronos Group, donated by Mi-
crosoft. The GREATDRAWINGROOM scene is made by the Hall-
wyl Museum. The SKYHOUSE scene is made by Sander Vander
Meiren, with the original name stylised sky player home dioroma.

References
[01] HRAA: High-Resolution Antialiasing Through Multisampling. Tech-

nical brief. NVIDIA Corp. 2001 6.

[Ake02] AKENINE-MÖLLER, TOMAS. “FLIPQUAD: Low-Cost Multi-
sampling Rasterization”. Technical Report 02-04. Chalmers University
of Technology, Apr. 2002 6.

[BD02] BENSON, DAVID and DAVIS, JOEL. “Octree Textures”. ACM
Trans. Graph. 21.3 (July 2002), 785–790. ISSN: 0730-0301. DOI: 10.
1145/566654.566652. URL: http://doi.acm.org/10.
1145/566654.566652 2–4.

[BL08] BURLEY, BRENT and LACEWELL, DYLAN. “Ptex: Per-face Tex-
ture Mapping for Production Rendering”. Proceedings of the Nineteenth
Eurographics Conference on Rendering. EGSR ’08. Sarajevo, Bosnia
and Herzegovina: Eurographics Association, 2008, 1155–1164. DOI:
10.1111/j.1467- 8659.2008.01253.x. URL: http://
dx.doi.org/10.1111/j.1467-8659.2008.01253.x 3.

[CB04] CHRISTENSEN, PER H. and BATALI, DANA. “An Irradiance Atlas
for Global Illumination in Complex Production Scenes”. Eurographics
Workshop on Rendering. Ed. by KELLER, ALEXANDER and JENSEN,
HENRIK WANN. The Eurographics Association, 2004. ISBN: 3-905673-
12-6. DOI: 10.2312/EGWR/EGSR04/133-141 3.

[CNLE09] CRASSIN, CYRIL, NEYRET, FABRICE, LEFEBVRE, SYLVAIN,
and EISEMANN, ELMAR. “GigaVoxels: Ray-guided Streaming for Effi-
cient and Detailed Voxel Rendering”. Proceedings of the 2009 Sympo-
sium on Interactive 3D Graphics and Games. I3D ’09. Boston, Mas-
sachusetts: ACM, 2009, 15–22. ISBN: 978-1-60558-429-4. DOI: 10.
1145/1507149.1507152. URL: http://doi.acm.org/10.
1145/1507149.1507152 2, 3.

[DKB*16] DADO, BAS, KOL, TIMOTHY R., BAUSZAT, PABLO, et al.
“Geometry and Attribute Compression for Voxel Scenes”. Computer
Graphics Forum 35.2 (2016), 397–407. DOI: 10.1111/cgf.12841.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/cgf.12841. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.12841 2, 3.

[DMA02] DESBRUN, MATHIEU, MEYER, MARK, and ALLIEZ, PIERRE.
“Intrinsic Parameterizations of Surface Meshes”. Computer Graphics
Forum (2002). ISSN: 1467-8659. DOI: 10 . 1111 / 1467 - 8659 .
00580 2.

[DSKA18] DOLONIUS, DAN, SINTORN, ERIK, KÄMPE, VIKTOR, and
ASSARSSON, ULF. “Compressing Color Data for Voxelized Surface Ge-
ometry”. IEEE Transactions on Visualization and Computer Graphics
25.2 (2018), 1270–1282. ISSN: 1077-2626. DOI: 10.1109/TVCG.
2017.2741480 2, 3, 5.

[GLHL11] GARCÍA, ISMAEL, LEFEBVRE, SYLVAIN, HORNUS, SAMUEL,
and LASRAM, ANASS. “Coherent Parallel Hashing”. ACM Trans. Graph.
30.6 (Dec. 2011), 161:1–161:8. ISSN: 0730-0301. DOI: 10 . 1145 /
2070781.2024195. URL: http://doi.acm.org/10.1145/
2070781.2024195 3.

[HPS08] HORMANN, KAI, POLTHIER, KONRAD, and SHEFFER, ALIA.
“Mesh Parameterization: Theory and Practice”. ACM SIGGRAPH ASIA
2008 Courses. SIGGRAPH Asia ’08. Singapore: ACM, 2008, 12:1–
12:87. DOI: 10.1145/1508044.1508091. URL: http://doi.
acm.org/10.1145/1508044.1508091 2.

[KE02] KRAUS, MARTIN and ERTL, THOMAS. “Adaptive Texture Maps”.
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware. HWWS ’02. Saarbrucken, Germany: Eurographics
Association, 2002, 7–15. ISBN: 1-58113-580-7. URL: http://dl.
acm.org/citation.cfm?id=569046.569048 3.

[KLS03] KHODAKOVSKY, ANDREI, LITKE, NATHAN, and SCHRÖDER,
PETER. “Globally Smooth Parameterizations with Low Distortion”.
ACM Trans. Graph. 22.3 (July 2003), 350–357. ISSN: 0730-0301. DOI:
10.1145/882262.882275. URL: http://doi.acm.org/10.
1145/882262.882275 2.

[KSA13] KÄMPE, VIKTOR, SINTORN, ERIK, and ASSARSSON, ULF.
“High Resolution Sparse Voxel DAGs”. ACM Transactions on Graph-
ics 32.4 (July 7, 2013). SIGGRAPH 2013 2–5.

[LD07] LEFEBVRE, SYLVAIN and DACHSBACHER, CARSTEN. “Tile-
Trees”. Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. ACM SIGGRAPH. ACM Press, 2007. URL:
http://www- sop.inria.fr/reves/Basilic/2007/
LD07 3.

[LFJG17] LIU, SONGRUN, FERGUSON, ZACHARY, JACOBSON, ALEC,
and GINGOLD, YOTAM. “Seamless: Seam erasure and seam-aware de-
coupling of shape from mesh resolution”. ACM Transactions on Graph-
ics (TOG) 36.6 (Nov. 2017), 216:1–216:15. ISSN: 0730-0301. DOI: 10.
1145/3130800.3130897 3.

[LH06] LEFEBVRE, SYLVAIN and HOPPE, HUGUES. “Perfect Spatial
Hashing”. ACM Trans. Graph. 25.3 (July 2006), 579–588. ISSN: 0730-
0301. DOI: 10.1145/1141911.1141926. URL: http://doi.
acm.org/10.1145/1141911.1141926 2, 3.

[LHN05] LEFEBVRE, SYLVAIN, HORNUS, SAMUEL, and NEYRET, FAB-
RICE. “GPU Gems 2”. 2005. Chap. Octree textures on the GPU, 595–
613 3.

[LK10] LAINE, SAMULI and KARRAS, TERO. “Efficient Sparse Voxel Oc-
trees”. Proceedings of the 2010 ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games. I3D ’10. Washington, D.C.: ACM,
2010, 55–63. ISBN: 978-1-60558-939-8. DOI: 10.1145/1730804.
1730814. URL: http://doi.acm.org/10.1145/1730804.
1730814 2, 3.

[LPRM02] LÉVY, BRUNO, PETITJEAN, SYLVAIN, RAY, NICOLAS, and
MAILLOT, JÉROME. “Least Squares Conformal Maps for Automatic
Texture Atlas Generation”. ACM Trans. Graph. 21.3 (July 2002), 362–
371. ISSN: 0730-0301. DOI: 10 . 1145 / 566654 . 566590. URL:
http://doi.acm.org/10.1145/566654.566590 2.

[MB11] MCDONALD Jr, JOHN and BURLEY, BRENT. “Per-face Tex-
ture Mapping for Real-time Rendering”. ACM SIGGRAPH 2011 Talks.
SIGGRAPH ’11. Vancouver, British Columbia, Canada: ACM, 2011,
10:1–10:1. ISBN: 978-1-4503-0974-5. DOI: 10 . 1145 / 2037826 .
2037840. URL: http://doi.acm.org/10.1145/2037826.
2037840 3.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/566654.566652
https://doi.org/10.1145/566654.566652
http://doi.acm.org/10.1145/566654.566652
http://doi.acm.org/10.1145/566654.566652
https://doi.org/10.1111/j.1467-8659.2008.01253.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01253.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01253.x
https://doi.org/10.2312/EGWR/EGSR04/133-141
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1145/1507149.1507152
http://doi.acm.org/10.1145/1507149.1507152
http://doi.acm.org/10.1145/1507149.1507152
https://doi.org/10.1111/cgf.12841
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12841
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12841
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12841
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12841
https://doi.org/10.1111/1467-8659.00580
https://doi.org/10.1111/1467-8659.00580
https://doi.org/10.1109/TVCG.2017.2741480
https://doi.org/10.1109/TVCG.2017.2741480
https://doi.org/10.1145/2070781.2024195
https://doi.org/10.1145/2070781.2024195
http://doi.acm.org/10.1145/2070781.2024195
http://doi.acm.org/10.1145/2070781.2024195
https://doi.org/10.1145/1508044.1508091
http://doi.acm.org/10.1145/1508044.1508091
http://doi.acm.org/10.1145/1508044.1508091
http://dl.acm.org/citation.cfm?id=569046.569048
http://dl.acm.org/citation.cfm?id=569046.569048
https://doi.org/10.1145/882262.882275
http://doi.acm.org/10.1145/882262.882275
http://doi.acm.org/10.1145/882262.882275
http://www-sop.inria.fr/reves/Basilic/2007/LD07
http://www-sop.inria.fr/reves/Basilic/2007/LD07
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/1141911.1141926
http://doi.acm.org/10.1145/1141911.1141926
http://doi.acm.org/10.1145/1141911.1141926
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/1730804.1730814
https://doi.org/10.1145/566654.566590
http://doi.acm.org/10.1145/566654.566590
https://doi.org/10.1145/2037826.2037840
https://doi.org/10.1145/2037826.2037840
http://doi.acm.org/10.1145/2037826.2037840
http://doi.acm.org/10.1145/2037826.2037840


Dan Dolonius & Erik Sintorn & Ulf Assarsson / UV-free Texturing using Sparse Voxel DAGs

[McD13] MCDONALD, JOHN. Eliminating Texture Waste: Borderless
Ptex. GDC Talk, 2013. Aug. 2013 3.

[MN88] MITCHELL, DON P. and NETRAVALI, ARUN N. “Reconstruction
Filters in Computer-graphics”. Proceedings of the 15th Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIGGRAPH
’88. New York, NY, USA: ACM, 1988, 221–228. ISBN: 0-89791-275-6.
DOI: 10.1145/54852.378514. URL: http://doi.acm.org/
10.1145/54852.378514 5.

[MP11] MAVRIDIS, PAVLOS and PAPAIOANNOU, GEORGIOS. “High
Quality Elliptical Texture Filtering on GPU”. Symposium on Interac-
tive 3D Graphics and Games. I3D ’11. San Francisco, California: ACM,
2011, 23–30. ISBN: 978-1-4503-0565-5. DOI: 10.1145/1944745.
1944749. URL: http://doi.acm.org/10.1145/1944745.
1944749 5.

[MSY19] MALLETT, IAN, SEILER, LARRY, and YUKSEL, CEM.
“Patch Textures: Hardware Implementation of Mesh Colors”. High-
Performance Graphics (HPG 2019). to appear. Strasbourg, France: The
Eurographics Association, 2019. ISBN: 978-3-03868-092-5. DOI: 10.
2312/hpg.20191194 3, 10.

[PCK04] PURNOMO, BUDIRIJANTO, COHEN, JONATHAN D., and KU-
MAR, SUBODH. “Seamless Texture Atlases”. Symposium on Geometry
Processing. Ed. by SCOPIGNO, ROBERTO and ZORIN, DENIS. The Eu-
rographics Association, 2004. ISBN: 3-905673-13-4. DOI: 10.2312/
SGP/SGP04/067-076 3.

[PTH*17] PORANNE, ROI, TARINI, MARCO, HUBER, SANDRO, et al.
“Autocuts: Simultaneous Distortion and Cut Optimization for UV Map-
ping”. ACM Trans. Graph. 36.6 (Nov. 2017), 215:1–215:11. ISSN: 0730-
0301. DOI: 10.1145/3130800.3130845. URL: http://doi.
acm.org/10.1145/3130800.3130845 2.

[RNLL10] RAY, NICOLAS, NIVOLIERS, VINCENT, LEFEBVRE, SYL-
VAIN, and LÉVY, BRUNO. “Invisible Seams”. Proceedings of the 21st
Eurographics Conference on Rendering. EGSR’10. Saarbr&#252;cken,
Germany: Eurographics Association, 2010, 1489–1496. DOI: 10 .
1111/j.1467- 8659.2010.01746.x. URL: http://dx.
doi.org/10.1111/j.1467-8659.2010.01746.x 3.

[SCGL02] SORKINE, OLGA, COHEN-OR, DANIEL, GOLDENTHAL,
RONY, and LISCHINSKI, DANI. “Bounded-distortion Piecewise Mesh
Parameterization”. Proceedings of the Conference on Visualization ’02.
VIS ’02. Boston, Massachusetts: IEEE Computer Society, 2002, 355–
362. ISBN: 0-7803-7498-3. URL: http : / / dl . acm . org /
citation.cfm?id=602099.602154 2.

[SLMB05] SHEFFER, ALLA, LÉVY, BRUNO, MOGILNITSKY, MAXIM,
and BOGOMYAKOV, ALEXANDER. “ABF++: Fast and Robust Angle
Based Flattening”. ACM Trans. Graph. 24.2 (Apr. 2005), 311–330. ISSN:
0730-0301. DOI: 10.1145/1061347.1061354. URL: http://
doi.acm.org/10.1145/1061347.1061354 2.

[SPGT18] SCHERTLER, NICO, PANOZZO, DANIELE, GUMHOLD, STE-
FAN, and TARINI, MARCO. “Generalized Motorcycle Graphs for Im-
perfect Quad-dominant Meshes”. ACM Trans. Graph. 37.4 (July 2018),
155:1–155:16. ISSN: 0730-0301. DOI: 10 . 1145 / 3197517 .
3201389. URL: http://doi.acm.org/10.1145/3197517.
3201389 2.

[SPR06] SHEFFER, ALLA, PRAUN, EMIL, and ROSE, KENNETH. “Mesh
Parameterization Methods and Their Applications”. Found. Trends.
Comput. Graph. Vis. 2.2 (Jan. 2006), 105–171. ISSN: 1572-2740. DOI:
10.1561/0600000011. URL: http://dx.doi.org/10.
1561/0600000011 2.

[SWG*03] SANDER, P. V., WOOD, Z. J., GORTLER, S. J., et al. “Multi-
chart Geometry Images”. Proceedings of the 2003 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing. SGP ’03. Aachen,
Germany: Eurographics Association, 2003, 146–155. ISBN: 1-58113-
687-0. URL: http : / / dl . acm . org / citation . cfm ? id =
882370.882390 2.

[Tar12] TARINI, MARCO. “Cylindrical and Toroidal Parameterizations
Without Vertex Seams”. Journal of Graphics Tools 16.3 (July
2012), 144–150. URL: http : / / vcg . isti . cnr . it /
Publications/2012/Tar12 3.

[Tar16] TARINI, MARCO. “Volume-encoded UV-maps”. ACM Trans.
Graph. 35.4 (July 2016), 107:1–107:13. ISSN: 0730-0301. DOI: 10 .
1145/2897824.2925898. URL: http://doi.acm.org/10.
1145/2897824.2925898 3.

[THCM04] TARINI, MARCO, HORMANN, KAI, CIGNONI, PAOLO, and
MONTANI, CLAUDIO. “PolyCube-Maps”. ACM Trans. Graph. 23.3
(Aug. 2004), 853–860. ISSN: 0730-0301. DOI: 10.1145/1015706.
1015810. URL: http://doi.acm.org/10.1145/1015706.
1015810 3.

[TYL17] TARINI, MARCO, YUKSEL, CEM, and LEFEBVRE, SYLVAIN.
“Rethinking Texture Mapping”. ACM SIGGRAPH 2017 Courses. SIG-
GRAPH ’17. Los Angeles, California: ACM, 2017, 11:1–11:139. ISBN:
978-1-4503-5014-3. DOI: 10 . 1145 / 3084873 . 3084911. URL:
http://doi.acm.org/10.1145/3084873.3084911 2.

[VMG16] VILLANUEVA, ALBERTO JASPE, MARTON, FABIO, and GOB-
BETTI, ENRICO. “SSVDAGs: Symmetry-aware Sparse Voxel DAGs”.
Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. I3D ’16. Redmond, Washington: ACM, 2016, 7–
14. ISBN: 978-1-4503-4043-4. DOI: 10.1145/2856400.2856420.
URL: http://doi.acm.org/10.1145/2856400.2856420 3.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh colors”. ACM Transactions on Graphics 29.2 (2010), 15:1–15:11.
ISSN: 0730-0301. DOI: 10.1145/1731047.1731053. URL: http:
//doi.acm.org/10.1145/1731047.1731053 3.

[YLT19] YUKSEL, CEM, LEFEBVRE, SYLVAIN, and TARINI, MARCO.
“Rethinking Texture Mapping”. Computer Graphics Forum (Proceed-
ings of Eurographics 2019) 38.2 (2019), 535–551. DOI: 10.1111/
cgf.13656. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13656 2.

[Yuk16] YUKSEL, CEM. “Mesh Colors with Hardware Texture Filtering”.
ACM SIGGRAPH 2016 Talks. SIGGRAPH ’16. Anaheim, California:
ACM, 2016, 10:1–10:2. ISBN: 978-1-4503-4282-7. DOI: 10.1145/
2897839.2927446. URL: http://doi.acm.org/10.1145/
2897839.2927446 3.

[Yuk17] YUKSEL, CEM. “Mesh Color Textures”. Proceedings of High Per-
formance Graphics. HPG ’17. Los Angeles, California: ACM, 2017,
17:1–17:11. ISBN: 978-1-4503-5101-0. DOI: 10.1145/3105762.
3105780. URL: http://doi.acm.org/10.1145/3105762.
3105780 2, 3.

[ZMT05] ZHANG, EUGENE, MISCHAIKOW, KONSTANTIN, and TURK,
GREG. “Feature-based Surface Parameterization and Texture Mapping”.
ACM Trans. Graph. 24.1 (Jan. 2005), 1–27. ISSN: 0730-0301. DOI: 10.
1145/1037957.1037958. URL: http://doi.acm.org/10.
1145/1037957.1037958 2.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/54852.378514
http://doi.acm.org/10.1145/54852.378514
http://doi.acm.org/10.1145/54852.378514
https://doi.org/10.1145/1944745.1944749
https://doi.org/10.1145/1944745.1944749
http://doi.acm.org/10.1145/1944745.1944749
http://doi.acm.org/10.1145/1944745.1944749
https://doi.org/10.2312/hpg.20191194
https://doi.org/10.2312/hpg.20191194
https://doi.org/10.2312/SGP/SGP04/067-076
https://doi.org/10.2312/SGP/SGP04/067-076
https://doi.org/10.1145/3130800.3130845
http://doi.acm.org/10.1145/3130800.3130845
http://doi.acm.org/10.1145/3130800.3130845
https://doi.org/10.1111/j.1467-8659.2010.01746.x
https://doi.org/10.1111/j.1467-8659.2010.01746.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01746.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01746.x
http://dl.acm.org/citation.cfm?id=602099.602154
http://dl.acm.org/citation.cfm?id=602099.602154
https://doi.org/10.1145/1061347.1061354
http://doi.acm.org/10.1145/1061347.1061354
http://doi.acm.org/10.1145/1061347.1061354
https://doi.org/10.1145/3197517.3201389
https://doi.org/10.1145/3197517.3201389
http://doi.acm.org/10.1145/3197517.3201389
http://doi.acm.org/10.1145/3197517.3201389
https://doi.org/10.1561/0600000011
http://dx.doi.org/10.1561/0600000011
http://dx.doi.org/10.1561/0600000011
http://dl.acm.org/citation.cfm?id=882370.882390
http://dl.acm.org/citation.cfm?id=882370.882390
http://vcg.isti.cnr.it/Publications/2012/Tar12
http://vcg.isti.cnr.it/Publications/2012/Tar12
https://doi.org/10.1145/2897824.2925898
https://doi.org/10.1145/2897824.2925898
http://doi.acm.org/10.1145/2897824.2925898
http://doi.acm.org/10.1145/2897824.2925898
https://doi.org/10.1145/1015706.1015810
https://doi.org/10.1145/1015706.1015810
http://doi.acm.org/10.1145/1015706.1015810
http://doi.acm.org/10.1145/1015706.1015810
https://doi.org/10.1145/3084873.3084911
http://doi.acm.org/10.1145/3084873.3084911
https://doi.org/10.1145/2856400.2856420
http://doi.acm.org/10.1145/2856400.2856420
https://doi.org/10.1145/1731047.1731053
http://doi.acm.org/10.1145/1731047.1731053
http://doi.acm.org/10.1145/1731047.1731053
https://doi.org/10.1111/cgf.13656
https://doi.org/10.1111/cgf.13656
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13656
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13656
https://doi.org/10.1145/2897839.2927446
https://doi.org/10.1145/2897839.2927446
http://doi.acm.org/10.1145/2897839.2927446
http://doi.acm.org/10.1145/2897839.2927446
https://doi.org/10.1145/3105762.3105780
https://doi.org/10.1145/3105762.3105780
http://doi.acm.org/10.1145/3105762.3105780
http://doi.acm.org/10.1145/3105762.3105780
https://doi.org/10.1145/1037957.1037958
https://doi.org/10.1145/1037957.1037958
http://doi.acm.org/10.1145/1037957.1037958
http://doi.acm.org/10.1145/1037957.1037958

